Dynamic Resource Allocation and Active Predictive Models for Enterprise Applications
نویسندگان
چکیده
This work is concerned with dynamic resource allocation for multi-tiered, cluster-based web hosting environments. Dynamic resource allocation is reactive, that is, when overloading occurs in one resource pool, servers are moved from another (quieter) pool to meet this demand. Switching servers comes with some overhead, so it is important to weigh up the costs of the switch against possible system gains. In this paper we combine the reactive behaviour of two well known switching policies – the Proportional Switching Policy (PSP) and the Bottleneck Aware Switching Policy (BSP) – with the proactive properties of several workload forecasting models. Seven forecasting models are used, including Last Observation, Simple Algorithm, Sample Moving Average, Exponential Moving Algorithm, Low Pass Filter and Autoregressive Moving Average. As each of the forecasting schemes has its own bias, we also develop three meta-forecasting algorithms (the Active Window Model, the Voting Model and the Selective Model) to ensure consistent and improved results. We show that request servicing capability can be improved by as much as 40% when the right combination of dynamic server switching and workload forecasting are used. As important is that we can generate consistently improved results, even when we apply this scheme to real-world, highly-variable workload traces from several
منابع مشابه
Towards effective dynamic resource allocation for enterprise applications
The growing use of online services requires substantial supporting infrastructure. The efficient deployment of applications relies on the cost effectiveness of commercial hosting providers who deliver an agreed quality of service as governed by a service level agreement for a fee. The priorities of the commercial hosting provider are to maximise revenue, by delivering agreed service levels, and...
متن کاملEmpirical prediction models for adaptive resource provisioning in the cloud
Cloud computing allows dynamic resource scaling for enterprise online transaction systems, one of the key characteristics that differentiates the cloud from the traditional computing paradigm. However, initializing a new virtual instance in a cloud is not instantaneous; cloud hosting platforms introduce several minutes delay in the hardware resource allocation. In this paper, we develop predict...
متن کاملOptimized Dynamic Allocation Management for ERP Systems and Enterprise Services
To ensure the operability and reliability of large scale Enterprise Resource Planning Systems (ERP) and enterprise services, a peak-load oriented hardware sizing is often used, which results in low average utilization. The evaluation of historical load data revealed that many applications show cyclical resource consumption. The identification of load patterns can be used for static as well as d...
متن کاملModel Predictive Control of a BCDFIG With Active and Reactive Power Control Capability for Grid-Connected Applications
Recently, Brushless Cascaded Doubly Fed Induction Generator (BCDFIG) has been considered as an attractive choice for grid-connected applications due to its high controllability and reliability. In this paper, a Finite Control Set Model Predictive Control (FCS-MPC) method with active and reactive power control capability in grid-connected mode is proposed for controlling the BCDFIG in a way that...
متن کاملIntegrated modeling and solving the resource allocation problem and task scheduling in the cloud computing environment
Cloud computing is considered to be a new service provider technology for users and businesses. However, the cloud environment is facing a number of challenges. Resource allocation in a way that is optimum for users and cloud providers is difficult because of lack of data sharing between them. On the other hand, job scheduling is a basic issue and at the same time a big challenge in reaching hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011